Vinayak Singh
01/13/2025, 2:16 PMfeature_df_list = [
f"{group_name_cleaned}.features_with_clusters"
for group_name_cleaned in groups_cleaned
]
target_df_list = [
f"{group_name_cleaned}.target_with_clusters"
for group_name_cleaned in groups_cleaned
]
input_dict = {
"target_col": "params:target_col",
"group_list": feature_df_list,
"target_clusters_with_features": target_df_list,
}
node(
func=collate_results,
inputs=input_dict,
outputs="run_collection",
),
⢠But it treats the catalog entries in the list as strings and does not load the datasets required with them
Please help me in trying to understand ow best I can pass dynamic inputs to a node in Kedro :)Hall
01/13/2025, 2:16 PMRashida Kanchwala
01/13/2025, 2:18 PMVinayak Singh
01/13/2025, 2:21 PMRashida Kanchwala
01/13/2025, 2:45 PMfor namespace, variants in settings.DYNAMIC_PIPELINES_MAPPING.items():
for variant in variants:
pipes.append(
pipeline(
data_science_pipeline,
inputs={"model_input_table": f"{namespace}.model_input_table"},
namespace=f"{namespace}.{variant}",
tags=[variant, namespace],
)
)
return sum(pipes)
It's from this blog - https://getindata.com/blog/kedro-dynamic-pipelines/Philipp Dahlke
01/13/2025, 3:36 PMVinayak Singh
01/14/2025, 11:47 AMVinayak Singh
01/14/2025, 11:57 AMRashida Kanchwala
01/14/2025, 5:28 PMPhilipp Dahlke
01/14/2025, 5:51 PMVinayak Singh
01/14/2025, 6:19 PMMax Hoffmann
01/22/2025, 10:01 PMdef node_function_receiving_multiple_inputs(*args):
loaded_list = list(args)
for data_input in loaded_list:
# do stuff