Vinayak Singh
01/13/2025, 2:16 PMfeature_df_list = [
    f"{group_name_cleaned}.features_with_clusters"
    for group_name_cleaned in groups_cleaned
]
target_df_list = [
    f"{group_name_cleaned}.target_with_clusters"
    for group_name_cleaned in groups_cleaned
]
input_dict = {
    "target_col": "params:target_col",
    "group_list": feature_df_list,
    "target_clusters_with_features": target_df_list,
}
node(
    func=collate_results,
    inputs=input_dict,
    outputs="run_collection",
),
⢠But it treats the catalog entries in the list as strings and does not load the datasets required with them
Please help me in trying to understand ow best I can pass dynamic inputs to a node in Kedro :)Hall
01/13/2025, 2:16 PMRashida Kanchwala
01/13/2025, 2:18 PMVinayak Singh
01/13/2025, 2:21 PMRashida Kanchwala
01/13/2025, 2:45 PMfor namespace, variants in settings.DYNAMIC_PIPELINES_MAPPING.items():
        for variant in variants:
            pipes.append(
                pipeline(
                    data_science_pipeline,
                    inputs={"model_input_table": f"{namespace}.model_input_table"},
                    namespace=f"{namespace}.{variant}",
                    tags=[variant, namespace],
                )
            )
    return sum(pipes)
It's from this blog - https://getindata.com/blog/kedro-dynamic-pipelines/Philipp Dahlke
01/13/2025, 3:36 PMVinayak Singh
01/14/2025, 11:47 AMVinayak Singh
01/14/2025, 11:57 AMRashida Kanchwala
01/14/2025, 5:28 PMPhilipp Dahlke
01/14/2025, 5:51 PMVinayak Singh
01/14/2025, 6:19 PMMax Hoffmann
01/22/2025, 10:01 PMdef node_function_receiving_multiple_inputs(*args):
    loaded_list = list(args)
    for data_input in loaded_list:
        # do stuff