Олег Литвинов
12/04/2024, 6:51 PMnode(
func=train_model,
inputs=["df_train", "y_train", "df_val", "y_val", "parameters"],
outputs="trained_recommender",
name="train_model_node",
tags=["training"],
),
Below is the link to the source code which accepts only dataset_name.startswith("params:")
https://github.com/Galileo-Galilei/kedro-mlflow/blob/master/kedro_mlflow/mlflow/kedro_pipeline_model.py#L122
Do I understand correctly that I have to define all the parameters I supposed to use manually?
Sounds surprising to see the error about kedro's default parameters 🙂
KedroPipelineModelError:
The datasets of the training pipeline must be persisted locally
to be used by the inference pipeline. You must enforce them as
non 'MemoryDataset' in the 'catalog.yml'.
Dataset 'parameters' is not persisted currently.
Hall
12/04/2024, 6:51 PMYolan Honoré-Rougé
12/04/2024, 9:30 PM# Parameters.yml
model_config:
Param1: value1
Param2: value2
Subdict1:
Subparam:value3
And in your pipeline.py:
node(
func=train_model,
inputs=["df_train", "y_train", "df_val", "y_val", "params:model_config"], outputs="trained_recommender",
name="train_model_node",
tags=["training"],
),
This should work and is more readable and reproducible.
@Juan Luis To follow another discussion, this is one of the thing I'd like to clarify and eventually break in 0.20/ 1.0 😅Олег Литвинов
12/04/2024, 9:34 PMYolan Honoré-Rougé
12/05/2024, 7:56 AMYolan Honoré-Rougé
12/05/2024, 7:58 AM